Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Am J Physiol Heart Circ Physiol ; 325(6): H1337-H1353, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37801046

RESUMO

Neuraminidases cleave sialic acids from glycocalyx structures and plasma neuraminidase activity is elevated in type 2 diabetes (T2D). Therefore, we hypothesize circulating neuraminidase degrades the endothelial glycocalyx and diminishes flow-mediated dilation (FMD), whereas its inhibition restores shear mechanosensation and endothelial function in T2D settings. We found that compared with controls, subjects with T2D have higher plasma neuraminidase activity, reduced plasma nitrite concentrations, and diminished FMD. Ex vivo and in vivo neuraminidase exposure diminished FMD and reduced endothelial glycocalyx presence in mouse arteries. In cultured endothelial cells, neuraminidase reduced glycocalyx coverage. Inhalation of the neuraminidase inhibitor, zanamivir, reduced plasma neuraminidase activity, enhanced endothelial glycocalyx length, and improved FMD in diabetic mice. In humans, a single-arm trial (NCT04867707) of zanamivir inhalation did not reduce plasma neuraminidase activity, improved glycocalyx length, or enhanced FMD. Although zanamivir plasma concentrations in mice reached 225.8 ± 22.0 ng/mL, in humans were only 40.0 ± 7.2 ng/mL. These results highlight the potential of neuraminidase inhibition for ameliorating endothelial dysfunction in T2D and suggest the current Food and Drug Administration-approved inhaled dosage of zanamivir is insufficient to achieve desired outcomes in humans.NEW & NOTEWORTHY This work identifies neuraminidase as a key mediator of endothelial dysfunction in type 2 diabetes that may serve as a biomarker for impaired endothelial function and predictive of development and progression of cardiovascular pathologies associated with type 2 diabetes (T2D). Data show that intervention with the neuraminidase inhibitor zanamivir at effective plasma concentrations may represent a novel pharmacological strategy for restoring the glycocalyx and ameliorating endothelial dysfunction.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Doenças Vasculares , Camundongos , Humanos , Animais , Zanamivir/farmacologia , Neuraminidase/química , Neuraminidase/farmacologia , Células Endoteliais , Diabetes Mellitus Tipo 2/tratamento farmacológico , Antivirais/farmacologia , Inibidores Enzimáticos/farmacologia
2.
Compr Physiol ; 12(4): 3781-3811, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35997082

RESUMO

The glycocalyx is a polysaccharide structure that protrudes from the body of a cell. It is primarily conformed of glycoproteins and proteoglycans, which provide communication, electrostatic charge, ionic buffering, permeability, and mechanosensation-mechanotransduction capabilities to cells. In blood vessels, the endothelial glycocalyx that projects into the vascular lumen separates the vascular wall from the circulating blood. Such a physical location allows a number of its components, including sialic acid, glypican-1, heparan sulfate, and hyaluronan, to participate in the mechanosensation-mechanotransduction of blood flow-dependent shear stress, which results in the synthesis of nitric oxide and flow-mediated vasodilation. The endothelial glycocalyx also participates in the regulation of vascular permeability and the modulation of inflammatory responses, including the processes of leukocyte rolling and extravasation. Its structural architecture and negative charge work to prevent macromolecules greater than approximately 70 kDa and cationic molecules from binding and flowing out of the vasculature. This also prevents the extravasation of pathogens such as bacteria and virus, as well as that of tumor cells. Due to its constant exposure to shear and circulating enzymes such as neuraminidase, heparanase, hyaluronidase, and matrix metalloproteinases, the endothelial glycocalyx is in a continuous process of degradation and renovation. A balance favoring degradation is associated with a variety of pathologies including atherosclerosis, hypertension, vascular aging, metastatic cancer, and diabetic vasculopathies. Consequently, ongoing research efforts are focused on deciphering the mechanisms that promote glycocalyx degradation or limit its syntheses, as well as on therapeutic approaches to improve glycocalyx integrity with the goal of reducing vascular disease. © 2022 American Physiological Society. Compr Physiol 12: 1-31, 2022.


Assuntos
Glicocálix , Mecanotransdução Celular , Endotélio Vascular/fisiologia , Glicocálix/metabolismo , Glicocálix/patologia , Heparitina Sulfato/metabolismo , Humanos , Mecanotransdução Celular/fisiologia , Estresse Mecânico
3.
Am J Physiol Heart Circ Physiol ; 323(4): H688-H701, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-36018759

RESUMO

Inflammation and vascular insulin resistance are hallmarks of type 2 diabetes (T2D). However, several potential mechanisms causing abnormal endothelial insulin signaling in T2D need further investigation. Evidence indicates that the activity of ADAM17 (a disintegrin and metalloproteinase-17) and the presence of insulin receptor (IR) in plasma are increased in subjects with T2D. Accordingly, we hypothesized that in T2D, increased ADAM17 activity sheds the IR ectodomain from endothelial cells and impairs insulin-induced vasodilation. We used small visceral arteries isolated from a cross-sectional study of subjects with and without T2D undergoing bariatric surgery, human cultured endothelial cells, and recombinant proteins to test our hypothesis. Here, we demonstrate that arteries from subjects with T2D had increased ADAM17 expression, reduced presence of tissue inhibitor of metalloproteinase-3 (TIMP3), decreased extracellular IRα, and impaired insulin-induced vasodilation versus those from subjects without T2D. In vitro, active ADAM17 cleaved the ectodomain of the IRß subunit. Endothelial cells with ADAM17 overexpression or exposed to the protein kinase-C activator, PMA, had increased ADAM17 activity, decreased IRα presence on the cell surface, and increased IR shedding. Moreover, pharmacological inhibition of ADAM17 with TAPI-0 rescued PMA-induced IR shedding and insulin-signaling impairments in endothelial cells and insulin-stimulated vasodilation in human arteries. In aggregate, our findings suggest that ADAM17-mediated shedding of IR from the endothelial surface impairs insulin-mediated vasodilation. Thus, we propose that inhibition of ADAM17 sheddase activity should be considered a strategy to restore vascular insulin sensitivity in T2D.NEW & NOTEWORTHY To our knowledge, this is the first study to investigate the involvement of ADAM17 in causing impaired insulin-induced vasodilation in T2D. We provide evidence that ADAM17 activity is increased in the vasculature of patients with T2D and support the notion that ADAM17-mediated shedding of endothelial IRα ectodomains is a novel mechanism causing vascular insulin resistance. Our results highlight that targeting ADAM17 activity may be a potential therapeutic strategy to correct vascular insulin resistance in T2D.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Proteína ADAM17/genética , Proteína ADAM17/metabolismo , Estudos Transversais , Diabetes Mellitus Tipo 2/metabolismo , Desintegrinas , Células Endoteliais/metabolismo , Humanos , Insulina/metabolismo , Receptor de Insulina/metabolismo , Proteínas Recombinantes/metabolismo , Inibidor Tecidual de Metaloproteinase-3/metabolismo
4.
Geroscience ; 44(3): 1657-1675, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35426600

RESUMO

Aging of the vasculature is characterized by endothelial dysfunction and arterial stiffening, two key events in the pathogenesis of cardiovascular disease (CVD). Treatment with sodium glucose transporter 2 (SGLT2) inhibitors is now known to decrease cardiovascular morbidity and mortality in type 2 diabetes. However, whether SGLT2 inhibition attenuates vascular aging is unknown. We first confirmed in a cohort of adult subjects that aging is associated with impaired endothelial function and increased arterial stiffness and that these two variables are inversely correlated. Next, we investigated whether SGLT2 inhibition with empagliflozin (Empa) ameliorates endothelial dysfunction and reduces arterial stiffness in aged mice with confirmed vascular dysfunction. Specifically, we assessed mesenteric artery endothelial function and stiffness (via flow-mediated dilation and pressure myography mechanical responses, respectively) and aortic stiffness (in vivo via pulse wave velocity and ex vivo via atomic force microscopy) in Empa-treated (14 mg/kg/day for 6 weeks) and control 80-week-old C57BL/6 J male mice. We report that Empa-treated mice exhibited improved mesenteric endothelial function compared with control, in parallel with reduced mesenteric artery and aortic stiffness. Additionally, Empa-treated mice had greater vascular endothelial nitric oxide synthase activation, lower phosphorylated cofilin, and filamentous actin content, with downregulation of pathways involved in production of reactive oxygen species. Our findings demonstrate that Empa improves endothelial function and reduces arterial stiffness in a preclinical model of aging, making SGLT2 inhibition a potential therapeutic alternative to reduce the progression of CVD in older individuals.


Assuntos
Diabetes Mellitus Tipo 2 , Inibidores do Transportador 2 de Sódio-Glicose , Doenças Vasculares , Actinas/metabolismo , Idoso , Animais , Diabetes Mellitus Tipo 2/tratamento farmacológico , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo , Análise de Onda de Pulso , Transportador 2 de Glucose-Sódio/metabolismo , Transportador 2 de Glucose-Sódio/uso terapêutico , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico
5.
Am J Physiol Heart Circ Physiol ; 322(2): H167-H180, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34890280

RESUMO

Consumption of diets high in fat, sugar, and salt (Western diet, WD) is associated with accelerated arterial stiffening, a major independent risk factor for cardiovascular disease (CVD). Women with obesity are more prone to develop arterial stiffening leading to more frequent and severe CVD compared with men. As tissue transglutaminase (TG2) has been implicated in vascular stiffening, our goal herein was to determine the efficacy of cystamine, a nonspecific TG2 inhibitor, at reducing vascular stiffness in female mice chronically fed a WD. Three experimental groups of female mice were created. One was fed regular chow diet (CD) for 43 wk starting at 4 wk of age. The second was fed a WD for the same 43 wk, whereas a third cohort was fed WD, but also received cystamine (216 mg/kg/day) in the drinking water during the last 8 wk on the diet (WD + C). All vascular stiffness parameters assessed, including aortic pulse wave velocity and the incremental modulus of elasticity of isolated femoral and mesenteric arteries, were significantly increased in WD- versus CD-fed mice, and reduced in WD + C versus WD-fed mice. These changes coincided with respectively augmented and diminished vascular wall collagen and F-actin content, with no associated effect in blood pressure. In cultured human vascular smooth muscle cells, cystamine reduced TG2 activity, F-actin:G-actin ratio, collagen compaction capacity, and cellular stiffness. We conclude that cystamine treatment represents an effective approach to reduce vascular stiffness in female mice in the setting of WD consumption, likely because of its TG2 inhibitory capacity.NEW & NOTEWORTHY This study evaluates the novel role of transglutaminase 2 (TG2) inhibition to directly treat vascular stiffness. Our data demonstrate that cystamine, a nonspecific TG2 inhibitor, improves vascular stiffness induced by a diet rich in fat, fructose, and salt. This research suggests that TG2 inhibition might bear therapeutic potential to reduce the disproportionate burden of cardiovascular disease in females in conditions of chronic overnutrition.


Assuntos
Cistamina/farmacologia , Dieta Ocidental/efeitos adversos , Inibidores Enzimáticos/farmacologia , Proteína 2 Glutamina gama-Glutamiltransferase/antagonistas & inibidores , Rigidez Vascular/efeitos dos fármacos , Actinas/metabolismo , Animais , Aorta/metabolismo , Aorta/fisiologia , Células Cultivadas , Colágeno/metabolismo , Elasticidade , Feminino , Humanos , Artérias Mesentéricas/metabolismo , Artérias Mesentéricas/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/fisiologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/fisiologia , Análise de Onda de Pulso
6.
Front Physiol ; 12: 588358, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33854438

RESUMO

Enhanced mineralocorticoid receptor (MR) signaling is critical to the development of endothelial dysfunction and arterial stiffening. However, there is a lack of knowledge about the role of MR-induced adipose tissue inflammation in the genesis of vascular dysfunction in women. In this study, we hypothesize that MR activation in myeloid cells contributes to angiotensin II (Ang II)-induced aortic stiffening and endothelial dysfunction in females via increased pro-inflammatory (M1) macrophage polarization. Female mice lacking MR in myeloid cells (MyMRKO) were infused with Ang II (500 ng/kg/min) for 4 weeks. This was followed by determinations of aortic stiffness and vasomotor responses, as well as measurements of markers of inflammation and macrophage infiltration/polarization in different adipose tissue compartments. MyMRKO mice were protected against Ang II-induced aortic endothelial stiffening, as assessed via atomic force microscopy in aortic explants, and vasorelaxation dysfunction, as measured by aortic wire myography. In alignment, MyMRKO mice were protected against Ang II-induced macrophage infiltration and M1 polarization in visceral adipose tissue (VAT) and thoracic perivascular adipose tissue (tPVAT). Collectively, this study demonstrates a critical role of MR activation in myeloid cells in the pathogenesis of vascular dysfunction in females associated with pro-inflammatory macrophage polarization in VAT and tPVAT. Our data have potential clinical implications for the prevention and management of cardiovascular disease in women, who are disproportionally at higher risk for poor outcomes.

7.
J Appl Physiol (1985) ; 129(2): 283-296, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32614687

RESUMO

We aimed to examine whether individuals with type 2 diabetes (T2D) exhibit suppressed leg vascular conductance and skeletal muscle capillary perfusion in response to a hyperinsulinemic-euglycemic clamp and to test whether these two variables are positively correlated. Subsequently, we examined whether T2D-associated skeletal muscle microvascular insulin resistance, as well as overall vascular dysfunction, would be ameliorated by an 8-wk walking intervention (45 min at 60% of heart rate reserve, 5 sessions/week). We report that, relative to healthy subjects, overweight and obese individuals with T2D exhibit depressed insulin-stimulated increases in leg vascular conductance, skeletal muscle capillary perfusion, and Akt phosphorylation. Notably, we found that within individuals with T2D, those with lesser increases in leg vascular conductance in response to insulin exhibited the lowest increases in muscle capillary perfusion, suggesting that limited muscle capillary perfusion may be, in part, linked to the impaired ability of the upstream resistance vessels to dilate in response to insulin. Furthermore, we show that the 8-wk walking intervention, which did not evoke weight loss, was insufficient to ameliorate skeletal muscle microvascular insulin resistance in previously sedentary, overweight/obese subjects with T2D, despite high adherence and tolerance. However, the walking intervention did improve (P < 0.05) popliteal artery flow-mediated dilation (+4.52%) and reduced HbA1c (-0.75%). It is possible that physical activity interventions that are longer in duration, engage large muscle groups with recruitment of the maximum number of muscle fibers, and lead to a robust reduction in metabolic risk factors may be required to overhaul microvascular insulin resistance in T2D.NEW & NOTEWORTHY This report provides evidence that in sedentary subjects with type 2 diabetes diminished insulin-stimulated increases in leg vascular conductance and ensuing blunted capillary perfusion in skeletal muscle are not restorable by increased walking alone. More innovative physical activity interventions that ultimately result in a robust mitigation of metabolic risk factors may be vital for reestablishing skeletal muscle microvascular insulin sensitivity in type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Diabetes Mellitus Tipo 2/tratamento farmacológico , Humanos , Insulina , Músculo Esquelético , Caminhada
8.
Hypertension ; 76(2): 393-403, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32594801

RESUMO

Increased arterial stiffness and vascular remodeling precede and are consequences of hypertension. They also contribute to the development and progression of life-threatening cardiovascular diseases. Yet, there are currently no agents specifically aimed at preventing or treating arterial stiffening and remodeling. Previous research indicates that vascular smooth muscle actin polymerization participates in the initial stages of arterial stiffening and remodeling and that LIMK (LIM kinase) promotes F-actin formation and stabilization via cofilin phosphorylation and consequent inactivation. Herein, we hypothesize that LIMK inhibition is able to prevent vasoconstriction- and hypertension-associated arterial stiffening and inward remodeling. We found that small visceral arteries isolated from hypertensive subjects are stiffer and have greater cofilin phosphorylation than those from nonhypertensives. We also show that LIMK inhibition prevents arterial stiffening and inward remodeling in isolated human small visceral arteries exposed to prolonged vasoconstriction. Using cultured vascular smooth muscle cells, we determined that LIMK inhibition prevents vasoconstrictor agonists from increasing cofilin phosphorylation, F-actin volume, and cell cortex stiffness. We further show that localized LIMK inhibition prevents arteriolar inward remodeling in hypertensive mice. This indicates that hypertension is associated with increased vascular smooth muscle cofilin phosphorylation, cytoskeletal stress fiber formation, and heightened arterial stiffness. Our data further suggest that pharmacological inhibition of LIMK prevents vasoconstriction-induced arterial stiffening, in part, via reductions in vascular smooth muscle F-actin content and cellular stiffness. Accordingly, LIMK inhibition should represent a promising therapeutic means to stop the progression of arterial stiffening and remodeling in hypertension.


Assuntos
Artérias/efeitos dos fármacos , Quinases Lim/antagonistas & inibidores , Miócitos de Músculo Liso/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Rigidez Vascular/fisiologia , Vasoconstrição/efeitos dos fármacos , Adulto , Animais , Artérias/fisiologia , Vasos Coronários/efeitos dos fármacos , Vasos Coronários/fisiologia , Feminino , Humanos , Hipertensão/fisiopatologia , Masculino , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/fisiologia , Miócitos de Músculo Liso/fisiologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Remodelação Vascular/efeitos dos fármacos , Remodelação Vascular/fisiologia , Vasoconstrição/fisiologia
9.
FASEB J ; 34(1): 1602-1619, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31914620

RESUMO

Endurance exercise begun with reduced muscle glycogen stores seems to potentiate skeletal muscle protein abundance and gene expression. However, it is unknown whether this greater signaling responses is due to performing two exercise sessions in close proximity-as a first exercise session is necessary to reduce the muscle glycogen stores. In the present study, we manipulated the recovery duration between a first muscle glycogen-depleting exercise and a second exercise session, such that the second exercise session started with reduced muscle glycogen in both approaches but was performed either 2 or 15 hours after the first exercise session (so-called "twice-a-day" and "once-daily" approaches, respectively). We found that exercise twice-a-day increased the nuclear abundance of transcription factor EB (TFEB) and nuclear factor of activated T cells (NFAT) and potentiated the transcription of peroxisome proliferator-activated receptor-É£ coactivator 1-alpha (PGC-1α), peroxisome proliferator-activated receptor-alpha (PPARα), and peroxisome proliferator-activated receptor beta/delta (PPARß/δ) genes, in comparison with the once-daily exercise. These results suggest that part of the elevated molecular signaling reported with previous "train-low" approaches might be attributed to performing two exercise sessions in close proximity. The twice-a-day approach might be an effective strategy to induce adaptations related to mitochondrial biogenesis and fat oxidation.


Assuntos
Biomarcadores/metabolismo , Exercício Físico/fisiologia , Mitocôndrias Musculares/metabolismo , Mitocôndrias Musculares/fisiologia , Proteínas Quinases Ativadas por AMP/metabolismo , Adaptação Fisiológica/fisiologia , Adulto , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Núcleo Celular/metabolismo , Núcleo Celular/fisiologia , Estudos Cross-Over , Glicogênio/metabolismo , Humanos , Masculino , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia , Fatores de Transcrição NFATC/metabolismo , Biogênese de Organelas , PPAR alfa/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Transdução de Sinais/fisiologia , Fatores de Transcrição/metabolismo
10.
Hypertension ; 74(6): 1409-1419, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31630572

RESUMO

Endothelin-1 (ET-1) is a powerful vasoconstrictor peptide considered to be causally implicated in hypertension and the development of cardiovascular disease. Increased ET-1 is commonly associated with reduced NO bioavailability and impaired vascular function; however, whether chronic elevation of ET-1 directly impairs endothelium-dependent relaxation (EDR) remains elusive. Herein, we report that (1) prolonged ET-1 exposure (ie, 48 hours) of naive mouse aortas or cultured endothelial cells did not impair EDR or reduce eNOS (endothelial NO synthase) activity, respectively (P>0.05); (2) mice with endothelial cell-specific ET-1 overexpression did not exhibit impaired EDR or reduced eNOS activity (P>0.05); (3) chronic (8 weeks) pharmacological blockade of ET-1 receptors in obese/hyperlipidemic mice did not improve aortic EDR or increase eNOS activity (P>0.05); and (4) vascular and plasma ET-1 did not inversely correlate with EDR in resistance arteries isolated from human subjects with a wide range of ET-1 levels (r=0.0037 and r=-0.1258, respectively). Furthermore, we report that prolonged ET-1 exposure downregulated vascular UCP-1 (uncoupling protein-1; P<0.05), which may contribute to the preservation of EDR in conditions characterized by hyperendothelinemia. Collectively, our findings demonstrate that chronic elevation of ET-1 alone may not be sufficient to impair EDR.


Assuntos
Endotelina-1/farmacologia , Óxido Nítrico/metabolismo , Vasoconstritores/farmacologia , Vasodilatação/efeitos dos fármacos , Animais , Aorta/fisiopatologia , Western Blotting/métodos , Células Endoteliais/efeitos dos fármacos , Feminino , Técnicas In Vitro , Espectrometria de Massas/métodos , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Sensibilidade e Especificidade
11.
Am J Physiol Heart Circ Physiol ; 317(5): H1166-H1172, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31603345

RESUMO

Insulin modulates vasomotor tone through vasodilator and vasoconstrictor signaling pathways. The purpose of the present work was to determine whether insulin-stimulated vasoconstriction is a pathophysiological phenomenon that can result from a combination of persistent insulin signaling, suppressed phosphatidylinositol-3 kinase (PI3K) activation, and an ensuing relative increase in MAPK/endothelin-1 (ET-1) activity. First, we examined previously published work from our group where we assessed changes in lower-limb blood flow in response to an oral glucose tolerance test (endogenous insulin stimulation) in lean and obese subjects. The new analyses showed that the peak rise in vascular resistance during the postprandial state was greater in obese compared with lean subjects. We next extended on these findings by demonstrating that insulin-induced vasoconstriction in isolated resistance arteries from obese subjects was attenuated with ET-1 receptor antagonism, thus implicating ET-1 signaling in this constriction response. Last, we examined in isolated resistance arteries from pigs the dual roles of persistent insulin signaling and blunted PI3K activation in modulating vasomotor responses to insulin. We found that prolonged insulin stimulation did not alter vasomotor responses to insulin when insulin-signaling pathways remained unrestricted. However, prolonged insulinization along with pharmacological suppression of PI3K activity resulted in insulin-induced vasoconstriction, rather than vasodilation. Notably, such aberrant vascular response was rescued with either MAPK inhibition or ET-1 receptor antagonism. In summary, we demonstrate that insulin-induced vasoconstriction is a pathophysiological phenomenon that can be recapitulated when sustained insulin signaling is coupled with depressed PI3K activation and the concomitant relative increase in MAPK/ET-1 activity.NEW & NOTEWORTHY This study reveals that insulin-induced vasoconstriction is a pathophysiological phenomenon. We also provide evidence that in the setting of persistent insulin signaling, impaired phosphatidylinositol-3 kinase activation appears to be a requisite feature precipitating MAPK/endothelin 1-dependent insulin-induced vasoconstriction.


Assuntos
Artérias/efeitos dos fármacos , Insulina/farmacologia , Fosfatidilinositol 3-Quinase/metabolismo , Vasoconstrição/efeitos dos fármacos , Animais , Artérias/enzimologia , Artérias/fisiopatologia , Endotelina-1/metabolismo , Ativação Enzimática , Feminino , Humanos , Resistência à Insulina , Masculino , Pessoa de Meia-Idade , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Obesidade/enzimologia , Obesidade/fisiopatologia , Transdução de Sinais , Sus scrofa
12.
Medicina (Kaunas) ; 55(10)2019 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-31615098

RESUMO

Background and Objectives: Recent studies have shown the existence of a positive relationship between physical exercise, symptomatic improvement, and reduction of damage caused by comorbidities associated with autistic spectrum disorder (ASD) in children, adolescents, and adults. The aim of this systematic review with meta-analysis (SRM) was to estimate the effects of physical exercise (PE) on the stereotyped behaviors of children with a diagnosis of ASD in intervention studies. Materials and Methods: The design followed the PRISMA guidelines and the TREND statement to assess the quality of information in each study. Nine non-randomized intervention trial studies with low, moderate, and vigorous physical exercise, with a duration varying from 8 to 48 weeks and a frequency of 3 times a week, were included in the SRM. The dependent variable episodes of stereotypical behaviors was analyzed in all studies and assessed as the number of episodes demonstrated by the child in pre- versus post-exercise intervention conditions. Results: The eight studies included a total 129 children (115 males and 14 females) with an average age of 8.93 ± 1.69 years. Children with ASD showed a reduction of 1.1 in the number of occurrences of stereotypical behaviors after intervention with physical exercise. Conclusion: Evidence was found to support physical exercise as an effective tool in reducing the number of episodes of stereotypical behaviors in children diagnosed with ASD.


Assuntos
Transtorno do Espectro Autista/terapia , Terapia Comportamental/métodos , Exercício Físico/fisiologia , Transtorno do Espectro Autista/complicações , Criança , Feminino , Humanos , Masculino , Comportamento Estereotipado
13.
Endocrinology ; 160(12): 2918-2928, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31617909

RESUMO

Obesity and insulin resistance stiffen the vasculature, with females appearing to be more adversely affected. As augmented arterial stiffness is an independent predictor of cardiovascular disease (CVD), the increased predisposition of women with obesity and insulin resistance to arterial stiffening may explain their heightened risk for CVD. However, the cellular mechanisms by which females are more vulnerable to arterial stiffening associated with obesity and insulin resistance remain largely unknown. In this study, we provide evidence that female mice are more susceptible to Western diet-induced endothelial cell stiffening compared with age-matched males. Mechanistically, we show that the increased stiffening of the vascular intima in Western diet-fed female mice is accompanied by enhanced epithelial sodium channel (ENaC) activity in endothelial cells (EnNaC). Our data further indicate that: (i) estrogen signaling through estrogen receptor α (ERα) increases EnNaC activity to a larger extent in females compared with males, (ii) estrogen-induced activation of EnNaC is mediated by the serum/glucocorticoid inducible kinase 1 (SGK-1), and (iii) estrogen signaling stiffens endothelial cells when nitric oxide is lacking and this stiffening effect can be reduced with amiloride, an ENaC inhibitor. In aggregate, we demonstrate a sexual dimorphism in obesity-associated endothelial stiffening, whereby females are more vulnerable than males. In females, endothelial stiffening with obesity may be attributed to estrogen signaling through the ERα-SGK-1-EnNaC axis, thus establishing a putative therapeutic target for female obesity-related vascular stiffening.


Assuntos
Endotélio Vascular/fisiopatologia , Canais Epiteliais de Sódio/metabolismo , Obesidade/fisiopatologia , Caracteres Sexuais , Rigidez Vascular , Animais , Células Cultivadas , Endotélio Vascular/metabolismo , Feminino , Masculino , Camundongos Endogâmicos C57BL , Obesidade/metabolismo
14.
J Appl Physiol (1985) ; 127(3): 713-725, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31246557

RESUMO

Exercise training performed with lowered muscle glycogen stores can amplify adaptations related to oxidative metabolism, but it is not known if this is affected by the "train-low" strategy used (i.e., once-daily versus twice-a-day training). Fifteen healthy men performed 3 wk of an endurance exercise (100-min) followed by a high-intensity interval exercise 2 (twice-a-day group, n = 8) or 14 h (once-daily group, n = 7) later; therefore, the second training session always started with low muscle glycogen in both groups. Mitochondrial efficiency (state 4 respiration) was improved only for the twice-a-day group (group × training interaction, P < 0.05). However, muscle citrate synthase activity, mitochondria, and lipid area in intermyofibrillar and subsarcolemmal regions, and PGC1α, PPARα, and electron transport chain relative protein abundance were not altered with training in either group (P > 0.05). Markers of aerobic fitness (e.g., peak oxygen uptake) were increased, and plasma lactate, O2 cost, and rating of perceived exertion during a 100-min exercise task were reduced in both groups, although the reduction in rating of perceived exertion was larger in the twice-a-day group (group × time × training interaction, P < 0.05). These findings suggest similar training adaptations with both training low approaches; however, improvements in mitochondrial efficiency and perceived effort seem to be more pronounced with twice-a-day training.NEW & NOTEWORTHY We assessed, for the first time, the differences between two "train-low" strategies (once-daily and twice-a-day) in terms of training-induced molecular, functional, and morphological adaptations. We found that both strategies had similar molecular and morphological adaptations; however, only the twice-a-day strategy increased mitochondrial efficiency and had a superior reduction in the rating of perceived exertion during a constant-load exercise compared with once-daily training. Our findings provide novel insights into skeletal muscle adaptations using the "train-low" strategy.


Assuntos
Adaptação Fisiológica , Treino Aeróbico , Treinamento Intervalado de Alta Intensidade , Mitocôndrias Musculares/enzimologia , Biogênese de Organelas , 3-Hidroxiacil-CoA Desidrogenases/metabolismo , Adulto , Respiração Celular , Citrato (si)-Sintase/metabolismo , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Voluntários Saudáveis , Humanos , Masculino , Mitocôndrias Musculares/ultraestrutura , Adulto Jovem
15.
J Appl Physiol (1985) ; 126(6): 1550-1562, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30946636

RESUMO

Angiotensin II (ANG II)-induced skeletal muscle wasting is characterized by activation of the ubiquitin-proteasome system. However, the potential involvement of proteolytic system macroautophagy/autophagy in this wasting process remains elusive. Autophagy is precisely regulated to maintain cell survival and homeostasis; thus its dysregulation (i.e., overactivation or persistent suppression) could lead to detrimental outcomes in skeletal muscle. Here we show that infusion of ANG II for 7 days in male FVB mice suppressed autophagy in skeletal muscle. ANG II blunted microtubule-associated protein 1 light chain 3B (LC3B)-I-to-LC3B-II conversion (an autophagosome marker), increased p62/SQSTM1 (an autophagy cargo receptor) protein expression, and decreased the number of autophagic vacuoles. ANG II inhibited UNC-51-like kinase 1 via inhibition of 5'-AMP-activated kinase and activation of mechanistic target of rapamycin complex 1, leading to reduced phosphorylation of beclin-1Ser14 and Autophagy-related protein 14Ser29, suggesting that ANG II impairs autophagosome formation in skeletal muscle. In line with ANG II-mediated suppression of autophagy, ANG II promoted accumulation of abnormal/damaged mitochondria, characterized by swelling and disorganized cristae and matrix dissolution, with associated increase in PTEN-induced kinase 1 protein expression. ANG II also reduced mitochondrial respiration, indicative of mitochondrial dysfunction. Together, these results demonstrate that ANG II reduces autophagic activity and disrupts mitochondrial ultrastructure and function, likely contributing to skeletal muscle wasting. Therefore, strategies that activate autophagy in skeletal muscle have the potential to prevent or blunt ANG II-induced skeletal muscle wasting in chronic diseases. NEW & NOTEWORTHY Our study identified a novel mechanism whereby angiotensin II (ANG II) impairs mitochondrial energy metabolism in skeletal muscle. ANG II suppressed autophagosome formation by inhibiting the UNC-51-like kinase 1(ULK1)-beclin-1 axis, resulting in accumulation of abnormal/damaged and dysfunctional mitochondria and reduced mitochondrial respiratory capacity. Therapeutic strategies that activate the ULK1-beclin-1 axis have the potential to delay or reverse skeletal muscle wasting in chronic diseases characterized by increased systemic ANG II levels.


Assuntos
Angiotensina II/farmacologia , Autofagia/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Animais , Autofagossomos/efeitos dos fármacos , Autofagossomos/metabolismo , Proteína Beclina-1/metabolismo , Masculino , Camundongos , Mitocôndrias/metabolismo , Músculo Esquelético/metabolismo , Atrofia Muscular/tratamento farmacológico , Atrofia Muscular/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos
16.
Scand J Med Sci Sports ; 29(5): 651-662, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30672619

RESUMO

PURPOSE: We tested the hypothesis that carbohydrate ingestion during exercise improves time trial (TT) performance and that this carbohydrate-induced improvement is greater when carbohydrates are ingested during exercise in a fasted rather than a fed state. METHODS: Nine males performed 105 minutes of constant-load exercise (50% of the difference between the first and second lactate thresholds), followed by a 10-km cycling TT. Exercise started at 9 am, 3 hours after either breakfast (FED, 824 kcal, 67% carbohydrate) or a 15-hour overnight fast (FAST). Before exercise, after every 15 minutes of exercise and at 5 km of the TT, participants ingested 2 mL kg-1 body mass of a non-caloric sweetened solution containing either carbohydrate (8% of maltodextrin, CHO) or placebo (0% carbohydrate, PLA). RESULTS: Irrespective of the fasting state, when carbohydrate was ingested during exercise, the rating of perceived exertion (RPE) was lower throughout the constant-load exercise, while the plasma glucose concentration and carbohydrate oxidation were higher during the last stages of the constant-load exercise (P < 0.05). Consequently, TT performance was faster when carbohydrate was ingested during exercise (18.5 ± 0.3 and 18.7 ± 0.4 minutes for the FEDCHO and FASTCHO conditions, respectively) than when the placebo was ingested during exercise (20.2 ± 0.8 and 21.7 ± 1.4 minutes for the FEDPLA and FASTPLA conditions, respectively), regardless of fasting. CONCLUSION: These findings indicate that even when breakfast is provided before exercise, carbohydrate ingestion during exercise is still beneficial for exercise performance. However, ingesting carbohydrate during exercise can overcome a lack of breakfast.


Assuntos
Desempenho Atlético/fisiologia , Ciclismo/fisiologia , Carboidratos da Dieta/administração & dosagem , Jejum , Fenômenos Fisiológicos da Nutrição Esportiva , Adulto , Glicemia/análise , Metabolismo dos Carboidratos , Método Duplo-Cego , Humanos , Masculino , Esforço Físico , Adulto Jovem
17.
J Physiol ; 597(1): 57-69, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30328623

RESUMO

KEY POINTS: It has been postulated that increased blood flow-associated shear stress on endothelial cells is an underlying mechanism by which physical activity enhances insulin-stimulated vasodilatation. This report provides evidence supporting the hypothesis that increased shear stress exerts insulin-sensitizing effects in the vasculature and this evidence is based on experiments in vitro in endothelial cells, ex vivo in isolated arterioles and in vivo in humans. Given the recognition that vascular insulin signalling, and associated enhanced microvascular perfusion, contributes to glycaemic control and maintenance of vascular health, strategies that stimulate an increase in limb blood flow and shear stress have the potential to have profound metabolic and vascular benefits mediated by improvements in endothelial insulin sensitivity. ABSTRACT: The vasodilator actions of insulin contribute to glucose uptake by skeletal muscle, and previous studies have demonstrated that acute and chronic physical activity improves insulin-stimulated vasodilatation and glucose uptake. Because this effect of exercise primarily manifests in vascular beds highly perfused during exercise, it has been postulated that increased blood flow-associated shear stress on endothelial cells is an underlying mechanism by which physical activity enhances insulin-stimulated vasodilatation. Accordingly, herein we tested the hypothesis that increased shear stress, in the absence of muscle contraction, can acutely render the vascular endothelium more insulin-responsive. To test this hypothesis, complementary experiments were conducted using (1) cultured endothelial cells, (2) isolated and pressurized skeletal muscle arterioles from swine, and (3) humans. In cultured endothelial cells, 1 h of increased shear stress from 3 to 20 dynes cm-2 caused a significant shift in insulin signalling characterized by greater activation of eNOS relative to MAPK. Similarly, isolated arterioles exposed to 1 h of intraluminal shear stress (20 dynes cm-2 ) subsequently exhibited greater insulin-induced vasodilatation compared to arterioles kept under no-flow conditions. Finally, we found in humans that increased leg blood flow induced by unilateral limb heating for 1 h subsequently augmented insulin-stimulated popliteal artery blood flow and muscle perfusion. In aggregate, these findings across models (cells, isolated arterioles and humans) support the hypothesis that elevated shear stress causes the vascular endothelium to become more insulin-responsive and thus are consistent with the notion that shear stress may be a principal mechanism by which physical activity enhances insulin-stimulated vasodilatation.


Assuntos
Arteríolas/fisiologia , Células Endoteliais/fisiologia , Endotélio Vascular/fisiologia , Insulina/fisiologia , Músculo Esquelético/fisiologia , Estresse Mecânico , Adulto , Animais , Células Cultivadas , Feminino , Temperatura Alta , Humanos , Perna (Membro)/irrigação sanguínea , Masculino , Artéria Poplítea/fisiologia , Fluxo Sanguíneo Regional , Suínos , Vasodilatação
18.
Appl Physiol Nutr Metab ; 42(11): 1127-1134, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28658582

RESUMO

While nitrate supplementation influences oxygen uptake (V̇O2) response to exercise, this effect may be intensity dependent. The purpose of this study was to investigate the effect of acute nitrate supplementation on V̇O2 response during different exercise intensity domains in humans. Eleven men ingested 10 mg·kg-1 body mass (8.76 ± 1.35 mmol) of sodium nitrate or sodium chloride (placebo) 2.5 h before cycling at moderate (90% of gas exchange threshold; GET), heavy (GET + 40% of the difference between GET and peak oxygen uptake (V̇O2peak), Δ 40) or severe (GET + 80% of the difference between GET and V̇O2peak, Δ 80) exercise intensities. Volunteers performed exercise for 10 min (moderate), 15 min (heavy) or until exhaustion (severe). Acute nitrate supplementation had no effect on any V̇O2 response parameters during moderate and severe exercise intensities. However, the V̇O2 slow amplitude (nitrate: 0.93 ± 0.36 L·min-1 vs. placebo: 1.13 ± 0.59 L·min-1, p = 0.04) and V̇O2 slow gain (nitrate: 5.81 ± 2.37 mL·min-1·W-1 vs. placebo: 7.09 ± 3.67 mL·min-1·W-1, p = 0.04) were significantly lower in nitrate than in placebo during the heavy exercise intensity. There was no effect of nitrate on plasma lactate during any exercise intensity (p > 0.05). Time to exhaustion during the severe exercise intensity was also not affected by nitrate (p > 0.05). In conclusion, acute nitrate supplementation reduced the slow component of V̇O2 only when performing heavy-intensity exercise, which might indicate an intensity-dependent effect of nitrate on V̇O2 response.


Assuntos
Exercício Físico , Nitratos/administração & dosagem , Consumo de Oxigênio/efeitos dos fármacos , Adulto , Índice de Massa Corporal , Estudos Cross-Over , Suplementos Nutricionais , Método Duplo-Cego , Humanos , Ácido Láctico/sangue , Masculino , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/fisiologia , Cloreto de Sódio/administração & dosagem , Inquéritos e Questionários , Adulto Jovem
19.
Med Sci Sports Exerc ; 48(9): 1810-20, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27128664

RESUMO

PURPOSE: This study aimed to investigate carbohydrate (CHO) mouth rinse response on neuromuscular activity, fuel oxidation rates, and cycling performance with different initial levels of endogenous CHO availability. METHODS: In a double-blind, randomized placebo-controlled design, eight males completed six experimental mouth rinse trials: CHO (6.4% maltodextrin) or placebo solution in a fed state (FED), 12-h fasted state (FAST), or a combined exercise-depleted muscle glycogen and 12-h fasted state (DEP). Trials consisted of 30-min cycling at 90% of gas exchange threshold, followed by a 20-km cycling time trial. Plasma lactate, plasma glucose, oxygen uptake, and EMG activity were measured, and CHO and fat oxidation rates were calculated. RESULTS: CHO mouth rinse maintained higher plasma glucose levels as the constant load exercise progressed (P = 0.023). The reduced EMG activity in the DEP condition with the placebo during constant load exercise was ameliorated with CHO mouth rinse (P < 0.01). Furthermore, the power output and the EMG activity throughout the 20-km time trial were reduced in the DEP condition with placebo but were both restored with CHO mouth rinse (P < 0.05). Time trial performance was only improved with CHO in the DEP compared with the corresponding placebo (P < 0.05), and no differences between supplements were observed in the FED or FAST states. Analyses of the qualitative inference showed "benefit very likely" of CHO mouth rinse on exercise performance in DEP, "possibly benefit" in FAST, and "negligible or trivial" in FED. CHO mouth rinse had no effect on CHO and fat oxidation rates in either exercise mode. CONCLUSION: The CHO mouth rinse influences exercise performance when endogenous CHO availability is low, and an enhanced central motor drive is potentially the main influencing mechanism.


Assuntos
Carboidratos da Dieta/administração & dosagem , Exercício Físico/fisiologia , Antissépticos Bucais , Resistência Física/fisiologia , Adulto , Glicemia/análise , Método Duplo-Cego , Eletromiografia , Teste de Esforço , Humanos , Ácido Láctico/sangue , Masculino , Consumo de Oxigênio , Polissacarídeos
20.
PLoS One ; 11(1): e0145733, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26727499

RESUMO

PURPOSE: The aim of the current study is to describe the functionality of free software developed for energy system contributions and energy expenditure calculation during exercise, namely GEDAE-LaB. METHODS: Eleven participants performed the following tests: 1) a maximal cycling incremental test to measure the ventilatory threshold and maximal oxygen uptake (V̇O2max); 2) a cycling workload constant test at moderate domain (90% ventilatory threshold); 3) a cycling workload constant test at severe domain (110% V̇O2max). Oxygen uptake and plasma lactate were measured during the tests. The contributions of the aerobic (AMET), anaerobic lactic (LAMET), and anaerobic alactic (ALMET) systems were calculated based on the oxygen uptake during exercise, the oxygen energy equivalents provided by lactate accumulation, and the fast component of excess post-exercise oxygen consumption, respectively. In order to assess the intra-investigator variation, four different investigators performed the analyses independently using GEDAE-LaB. A direct comparison with commercial software was also provided. RESULTS: All subjects completed 10 min of exercise at moderate domain, while the time to exhaustion at severe domain was 144 ± 65 s. The AMET, LAMET, and ALMET contributions during moderate domain were about 93, 2, and 5%, respectively. The AMET, LAMET, and ALMET contributions during severe domain were about 66, 21, and 13%, respectively. No statistical differences were found between the energy system contributions and energy expenditure obtained by GEDAE-LaB and commercial software for both moderate and severe domains (P > 0.05). The ICC revealed that these estimates were highly reliable among the four investigators for both moderate and severe domains (all ICC ≥ 0.94). CONCLUSION: These findings suggest that GEDAE-LaB is a free software easily comprehended by users minimally familiarized with adopted procedures for calculations of energetic profile using oxygen uptake and lactate accumulation during exercise. By providing availability of the software and its source code we hope to facilitate future related research.


Assuntos
Exercício Físico , Software , Adulto , Humanos , Consumo de Oxigênio , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...